${a_1},{a_2},.......,{a_{30}}$ એ સમાંતર શ્રેણીમાં છે. $S = \sum\limits_{i = 1}^{30} {{a_i}} $ અને $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $. જો  ${a_5} = 27$ અને $S - 2T = 75$ , તો $a_{10}$ મેળવો.

  • [JEE MAIN 2019]
  • A

    $52$

  • B

    $57$

  • C

    $47$

  • D

    $42$

Similar Questions

પ્રથમ ત્રણ પદો લખો : $a_{n}=\frac{n-3}{4}$

જો સમાંતર શ્રેણીનું પ્રથમ અને અંતિમ પદ $a$ અને $ℓ $ તથા તેના દરેક પદોનો સરવાળો $S$ થાય, તો તેનો સામાન્ય તફાવત કેટલો થાય ?

ધારો કે $3, 6. 9, 12,$ .. $(78$ પદો સુધી) અને $5, 9, 13,$ $17, \ldots(59$ પદો સુધી) બે શ્રેણીઓ છે.,તો બંને શ્રેણીઓનાં સામાન્ય પદોનો સરવાળો $\dots\dots$છે.

  • [JEE MAIN 2022]

જો $a, b$ અને $c$ એવા ત્રણ ધન સંખ્યા છે કે જે સમાંતર શ્રેણીમાં છે અને $abc\, = 8$ થાય તો $b$ ની ન્યૂનતમ કિમત મેળવો. 

  • [JEE MAIN 2017]

સમાંતર શ્રેણીના પ્રથમ $10$  પદોનો સરવાળો તેના પ્રથમ $5$ પદના સરવાળાથી $4$ ગણો હોય, તો તેના પ્રથમ પદ અને સામાન્ય તફાવતનો ગુણોત્તર...... છે.